

Mestrado em Engenharia Alimentar

Tecnologia dos Cereais Cereal Evolution and Genomics

Manuela Gomes da Silva

/	_		
n	A	ic	$\mathbf{\cap}$
	U		C

Evolução dos genomas de cereais Poliploidização Autopoliploidia vs Alopoliploidia Processos de poliploidização

Vantagens da poliploidia

Deteção e estudo de poliploides

Citogenética, Sequenciação

Sequenciação – Metodo Sanger

Cereais sequenciados

Poliploidização nas Gramineas

Genoma de Gramineas

Arroz, milho, aveia, triticale

Espécies selvagens aparentadas e variedades tradicionais

Impactos do aquecimento global

Aplicações da biologia molecular no estudo de cereais

Understanding Cereal Genomics

Cereals economic and scientific importance

→ extensive history of research in

genetics, development, and evolution

Relationships among morphologically <u>diverse cereals</u> from globally <u>geographic environments</u>

> → particularly attractive for <u>comparative studies</u> of plant genome evolution

Complete genome sequence of rice

transition to high-throughput genomics study of many other cereals

谢 The Origin of Wheat

Today's bread wheat originates from three ancestral grass species and results from two consecutive hybridizations

International Wheat Genome Sequencing Consortium IWGSC

Importance of cytogenetics and molecular biology for cereal study

FISH of hexaploid triticale metaphase

Need to **know** and understand the evolution of **cereal genomes**

Design strategies for **plant breeding**

Dutartre et al 2012

Rice Herbicide resistance 10-· Grain yield · Resistance to splicing rate) inhibitors Resistance to rice blast. Δ %) bacterial blight and rice tungro disease Barley aestivum/Triticum spp. Herbicide resistance Adaption to various abiotic stresses Dwarf stature and ${}^{\Delta}{}_{\Delta}$ reduced fruit • Aroma dehiscence · Plant architecture · Low phytic acid Increase disease ^ Low-gluten resistance to fungal ^^<u>^</u>^ Low cesium accumulation 3% legal pathogens - AAAA Stress tolerance Low Cd-accumulation Increased Root Growth Italian limit and Shoot Biomass Decreased accumulation of Ŀ. cytokinins Italian wheat EU wheat Non-EU wheat Quantification of T. aestivum in Italian, European Union (EU), and Non-EU semola Italian pasta certification

105 Water Deficit 90 no Water Deficit 75 Relative Grain Yield 60 45 30 15 -15 -250 -200 -150 -100 -50 0 50 100 150 200 250 Rainfal **OGM** wheat drought tolerance

Importance of Cereal Biotechnology

Successful applications of CRISPR/Cas

Use of Molecular Biology tools

Polyploid plants - Gramineae

Many crop plants are polyploid

Potato, cotton, coffee, tobacco, banana...

A sample of agricultural products obtained from polyploid crops

Polyploidy is particularly frequent in Poaceae family (**Gramineae**)

Leitch and Leitch, 2008

Polyploid types

Multiple genomes \rightarrow organisms with multiple copies of a genome or with different genomes sharing the same nuclei (Stebbins, 1971, Lewis, 1980)

(hybridization + somatic chromosome duplication or union of unreduced gametes)

Allopolyploids considered to be much more common than autopolyploids.

2n = 6 = 2x (diploid) 2n = 9 = 3x (triploid) 2n = 12 = 4x (tetraploid)

Polyploidy

- POLYPLOID plants with <u>multiple copies</u> of a genome or with <u>different genomes</u>

How do polyploid plants arise??

→ Mitotic or Meiotic errors

Rare events that occurred at least one time throughout the evolutive history

Polyploidy origin - Mitotic anomalies

\rightarrow somatic chromosome doubling

Diploid species doubling \rightarrow autopolyploid F1 hybrid doubling \rightarrow allopolyploid

(a) Formation of an **autotetraploid** by doubling a basic set of chromosomes.

(b) Formation of an allotetraploid by interspecific hybridization followed by chromosome doubling.

Autopolyploidy ← genome duplication

Causes of **genome duplication**:

Polyploidy origin - Fusion of diploid gametes

Formation of allopolyploids: main models

"Two-step" model

interspecific <u>hybridization</u> <u>chromosome doubling</u> of the F1 hybrid → most common process - in Triticeae evolution - to produce synthetic polyploids (colchicine chromosome-doubling properties) **"One-step" model**

fertilization of <u>unreduced gametes</u> from different diploid species

Actividade – visualização de vídeos em grupo

Grupos de 4/5 alunos

Cada grupo vê um vídeo (10 min)

Cada grupo discute o conteúdo do vídeo e elabora um pequeno resumo (10 min)

Cada grupo elege um porta-voz

No fim, apresentação do resumo sobre cada um dos vídeos (5 min)

VÍDEOS https://tinyurl.com/VideosAulaTecCereais

1 - Mitosis vs. Meiosis: Side by Side Comparison 6'21"

https://www.youtube.com/watch?v=zrKdz93WIVk&ab_channel=AmoebaSisters

2 - Polyploidy 2'

https://www.youtube.com/watch?v=e77Dwu7-QMo&ab_channel=BaylorTutoringCenter

3 - Sweet but dangerous? The strange story of polyploidy 4'11"

https://www.youtube.com/watch?v=Idpt19_PSVQ&ab_channel=GatsbyPlantScienceEdu cationProgramme

4 - FISH - Fluorescence In Situ Hybridization 3'48"

https://www.youtube.com/watch?v=LiRJoTi44TA&ab_channel=Henrik%27sLab

5 - Sanger Sequencing of DNA 3'39"

https://www.youtube.com/watch?v=AI4CnG5Jp4s&ab_channel=LaUrsa

Vídeo

Cada grupo vê um vídeo (10 min)

Vídeo

Cada grupo vê um vídeo (10 min)

Resumo

Discussão e elaboração do resumo (10 min)

Resumo

Discussão e elaboração do resumo (10 min)

Apresentação

Apresentações à turma dos resumos dos vários grupos (5 min)

What **plants** do better than animals?

In terms of reproduction, plants have more options than animals: \rightarrow sexual and asexual

Why Polyploidy is less common in animals?

ANIMALS

Chromosomally determined sex (polyploidy interference)

More complex **development** - organ systems fine-tuned affected by different gene dosages

Isolation mechanisms (geographic, temporal, behavioral etc.) prevent natural interbreeding between species

PLANTS

Meristematic tissue throughout their lives and self-fertile

Advantages of Polyploidy

- Duplicated gene copies can evolve to assume new functions
 - → Genes free to mutate
- Larger cells and organs
- Enhanced abiotic and biotic stress tolerance
- Recurrent polyploidy (increased genetic diversity)
- Genomic rearrangements (novel genotypes)
- Epigenetic changes (rapid adaptation)

→ Higher **PLASTICITY**

Increased **adaptability** to a higher ecological range

Polyploidy \rightarrow Larger cells and organs

Diploid and autotetraploid cultivars of *Lolium perenne* and *L. multiflorum*

longer leaves, longer mature cells (20x) (epidermal and mesophyll)

← faster cell elongation rate,

not by a longer period of cell elongation

 No variation in cell division parameters (cell production rate and cell cycle time)

Molecular basis for polyploid vigor

Allopolyploid → genes for photosynthesis and starch metabolism are more active

- Increased photosynthesis, higher amounts of chlorophyll
- higher starch accumulation

 \rightarrow growing larger in comparison with

their parents

The hybrid *Arabidopsis* plant (center) is larger than its parents (top and bottom), an example of hybrid vigor

Polyploidy detection

Polyploid species – detected by cytogenetics

Paleopolyploids – detected by genome sequencing

Cereal genome cytogenetics

Metodologias citogenéticas

- Estabelecimento de cariótipos
- Técnicas de bandeamento
 - \rightarrow Actividade

Caraterização do genoma dos trigo e espécies aparentadas

Cytogenetics

Cytogenetics = Cellular Genetics

- Branch of genetics that is concerned primarily in **cellular components**, especially **chromosomes**

- <u>Correlates</u> the structure and number of chromosomes analyzed in isolated cells with <u>variation in genotype and phenotype</u>.

Cytogenetic tools

- → Conventional karyotyping Chromosome banding
- \rightarrow Molecular cytogenetics

Fluorescence In Situ Hybridization (FISH)

Chromosome morphology

Contromeric position \rightarrow chromosome form

Karyotypes:

Autosomes (non-sex) chromosomes are numbered in descending order by size. Sex chromosomes are generally placed at the end.

Chromosome banding Techniques

C-banding

Technique	Procedure	Banding pattern
G-banding	Mild proteolysis with trypsine followed by staining with Giemsa	Dark bands are AT-rich Pale bands are GC-rich. Typically, Giemsa staining produces between 400 and 800 bands distributed among the 23 pairs of human chromosomes
R-banding	Heat denaturation followed by staining with Giemsa	Reverse banding: Dark bands are GC-rich Pale bands are AT-rich
Q-banding	Stain with quinacrine	Fluorescence banding. Dark bands are AT-rich Pale bands are GC-rich
C-banding	Denature with barium hydroxide and then stain with Giemsa	Dark bands contain constitutive heterochromatin. In humans mainly stains the centromeres

Actividade - Karyotyping exercise

https://ilias.hhu.de/ilias.php?baseClass=ilSAHSPresentationGUI&ref_id=884328

Fluorescence In Situ Hybridization (FISH) Fundamentos da técnica

- Utilização de sequências conhecidas (sondas) marcada com um fluorocromo
- Desnaturação da sonda e das sequências de DNA nos cromossomas
- Renaturação (Hibridação) da sonda com a sequência nos cromossomas com base na

Complementaridade entre bases

 \rightarrow associação da sonda / sequência-alvo

→ visualização de sequências de DNA marcadas nas células

In Situ Hybridization Aplicações da técnica

- bandeamento para estabelecimento de cariótipos - FISH

- Identificação de genomas das espécies parentais - GISH

Cromossomas de triticale Verde - centeio Azul – DNA corado com DAPI

Ancestral polyploidy - Paleopolyploidy

- Occurred at least once during the evolutionary history of all angiosperms
- Polyploidy, followed by gene loss and diploidization, was an important evolutionary force in plants.
- Innovations induced associated evolutive success of angiosperms.

Ancestral polyploidy events

- (A) Two ancestral duplications
- one in the ancestor of gymnosperms
- other in the ancestor angiosperms
- (B) Innovations in reproductive organs

Cereal genome **sequencing**

SEQUENCIAÇÃO

- Principais metodologias de sequenciação
- Caraterização do genoma dos trigo e espécies aparentadas
 Identificação de poliploides ancestrais

Sequencing

- "Sequencing" to know the order of
 - nucleotides in the DNA molecules
 - (- aminoacids in the proteins)
- The nucleotides order determines the amino acids order and therefore the protein structure and function
- Changes in the DNA can be correlated with changes in proteins codded in the DNA
- → Allowed the identification on paleopolyploid species

Sequenciação – Método Sanger

https://www.youtube.com/watch?v=AI4CnG5Jp4s&ab_channel=LaUrsa 2'22"

The Sanger method

Automated Sanger Sequencing Technology

- **A.** The target DNA is fragmented, amplified, denatured, and bound to a primer.
- **B.** The elongation process occurs in a single reaction mixture where the addition of fluorescently labelled dideoxynucleotides (ddNTP) results in termination.

C. Capillary gel electrophoresis to separate the terminated fragments by size and laser excitation for detection.

Sanger Sequencing

Sequencing methods

Sanger	Next-generation sequencing	Third generation technologies			
One DNA molecule sequenced at a time	DNA is broken into short pieces, amplified , and then sequenced.	Directly sequencing of single DNA molecules. DNA do not break down or amplify			
Gel Sanger Capillary Sanger	Illumina GA	PacBio SMRT Nanopore			

Improvements in genome sequencing technology over the past two decades has → Higher **speed** and lower **cost**

Poaceae species with **sequenced genome**

Species	Genome size	Year
Oryza sativa (long grain rice) ssp indica	430 Mbp	2002
<i>Oryza sativa</i> (Short grain rice) ssp japonica	430 Mbp	2002
Sorghum bicolor genotype BTx623	730 Mbp	2009
<u>Zea mays (maize) ssp mays B73</u>	2.3 Gbp	2009
Brachypodium distachyon (purple false brome)	355 Mbp	2010
Hordeum vulgare (barley)	5.3 Gbp	2012
<u>Triticum urartu</u>	4.94 Gbp	2013
Aegilops tauschii (Tausch's goatgrass)	4.36 Gbp	2017
Triticum aestivum (bread wheat)	14.5 Gbp	2018

Gramineae polyploids

Poaceae (Gramineae) is one of the largest monocots families (10,000 species, 600 to 700 genera)

- \rightarrow diverged from an ancestral progenitor 50 to 70 million years ago
 - Polyploidy in grasses is an ongoing process

Gramineae polyploids

Rice (Oryza sativa) – ancient polyploid

Rice genome analysis

PPP1 - ancient genome duplication that precedes divergence of **cereals**

PPP2 - another <u>older</u> large-scale duplication event that precedes **monocotdicot** divergence

The **first** genome of a crop plant that was completely **sequenced** in 2002

- Sequencing of two major **subspecies** indica & japonica
- Model cereal crop small genome size (2n = 24)
- High degree of **colinearity with other cereals** genome Ex: wheat, barley and maize

Zhang et a 2005

Rice – from ancient polyploid to breeding

	Goal	Examples of relevant traits	Genes	111
Consumer and producer	Improved yield	 Number of panicles Number of grains per panicle Grain weight Plant architecture 		
	Improved grain quality	 Appearance quality Eating quality Nutritional quality 		Genomic breeding
ce and nment	Less fertilizer	 Efficient nitrogen use Efficient phosphorus use 	?	Green Super
	Less pesticide	 Insect resistance Disease resistance 		Rice
Resour enviro	Wider habitats	 Drought resistance Flood tolerance Cold resistance Heat resistance 		

→ Genetic variation among domesticated rice species and their wild relatives has been investigated to identifying traits that can be exploited for breed

Wing et al 2018

Popped Secret: The Mysterious Origin of Corn

https://www.youtube.com/watch?v=mBuYUb_mFXA&ab_channel=biointeractive 17'52"

2008 Loskutov

International Wheat Genome Sequencing Consortium IWGSC

60% until 2050

Human main source of calories and protein

Wheat (T. turgidum, T. aestivum) evolutive history

Wheat polyploidization events:

500 000 years ago

- durum wheat (tetraploid, 2n = 28)

8000-10 000 years ago

- bread wheat (hexaploid, 2n = 42)

Wheat and relative species - spikes and grains

Shewry 2009

Wheat evolution through polyploidization

Evolutionary history of wheat

Evolutionary History of Wheat

https://colostate.pressbooks.pub/cropwildrelatives/chapter/wheat-breeding-with-crop-wild-relatives/

Artificial methods to induce polyploidy: chromosome duplication

 Colchicine - inhibits microtubule polymerization by binding to the main constituents of microtubules – tubulin

ightarrow blocking of mitotic spindle formation

autumnale

Cells cannot split into two daugther cells

Future increase in food demand

The most sustainable path to achieve food security is by **increasing crop yields** instead of use more land.

Improved plants are being developed through the application of **advances in genetic technologies**.

Future of Cereal Genomics and Breeding

<u>Genomic knowledge</u> combined with <u>traditional breeding methods</u> to increase cereal crop production and resilience

- \rightarrow Commercial varieties
- \rightarrow Wild relatives
- \rightarrow Old traditional varieties

Landraces assume crucial importance as pools of agrobiodiversity of

useful traits for wheat breeding
pre-adapted to extreme environmental conditions

Particularly considering the genetically eroded commercial varieties

decades of homogenization through breeding

Wheat

Oats
Re
Mittet Barley

Colecção de variedades tradicionais de trigo mole e trigo duro

Vasconcelos, J. C. (1933). **Trigos portuguêses ou de há muito cultivados no país**. Subsídios para o seu estudo botânico. *Bol. Agric.* 1, 2, 1–150.

Assessment of Portuguese bread **wheat landrace** diversity to cope with **global warming**

Evaluation of heatwave like treatment effects on Portuguese landrace yield and grain composition

<u>Heatwave</u> treatment \rightarrow general **increase** in grain **protein** content

But... Landraces showed variability in:

- Yield traits (grain number and weight)
- Grain major components

 \rightarrow protein content and polysaccharide composition

Integrated assessment \rightarrow distinct responses to cope with heat

Tomás et al 2020

Heat effect on wheat grain

- level of peptides involved in celiac disease

Evaluation of expression level of 63 genes coding peptides with known immunoreactivity

high temperature \rightarrow increased expression levels

Climate change does impact wheat allergen expression

2018 Juhász et al

The heat is on: of cereals and genome

HELMHOLTZ

But wheat is not good for everyone

Celiac disease Wheat sensitivities

Wheat allergy

Baker's asthma

ELM

HELMHOLTZ

PCR (Polimerase Chain Reaction)

Amplificação de DNA - em cada ciclo a sequência localizada entre os dois *primers* originais é copiada (DNA sintetizada pela DNA Taq polimerase).

Figure 8-45b Molecular Biology of the Cell (© Garland Science 2008)

Genome size

Genome - entire DNA complement of an organism

Eukaryote genomes

- = DNA regions encoding proteins genes (~ 1.5%)
- + apparently **nonfunctional repetitive** DNA

Amphibia - vertebrates with the greatest genome Plant species - considerably more DNA than humans ex: tulips 10x

DNA content varies considerably also between closely related species

Ex: insects or amphibians 100x in species within each of these phylogenetic classes, although similarly complex

The Cell: A Molecular Approach. 8th Edition

Caracterização de um genoma

- detecção de mutações/polimorfismos do DNA por PCR

- Polimorfismos pequenas variações (mutações) no nº de nucleótidos
- Análise dos polimorfismos:
 - amplificação do DNA com primers para as regiões adjacentes
 - análise da dimensão dos fragmentos de DNA amplificados por electroforese

Figure 8-47a Molecular Biology of the Cell (© Garland Science 2008)

Caracterização da variabilidadeatravés da análise de microsatélites

O nº de repetições nos diversos microsatélites é muito variável (4-40) (entre espécies diferentes ou mesmo entre indivíduos da mesma espécie.

Figure 8-47b Molecular Biology of the Cell (© Garland Science 2008)

Food Control Volume 56, October 2015, Pages 57-63

Screening new gene markers for gluten detection in foods

Begoña Martín-Fernández ^{a, b}, Joana Costa ^a, M. Beatriz P.P. Oliveira ^a, Beatriz López-Ruiz ^b, Isabel Mafra ^a ∧ ⊠

Detection of gluten in foods

Amplification obtained by real-time PCR of α 2-gliadin in DNA from wheat and related cereals containing gluten (barley and rye) and oat.

Quantitative real-time **PCR** methods targeting $\alpha 2$ -gliadin coding sequences

 \rightarrow successfully detection wheat DNA.

Limit of detection: absolute 2 pg and relative 0.005% (50 mg/kg) of wheat in soybean (corresponding to 4.5 mg/kg of gluten).

This methodology reveals also high specificity for detecting other gluten-containing cereals, such as barley and rye.

 \rightarrow This PCR systems can be used as tools to confirm the presence of **gluten-containing cereals** in foods, towards the safety of celiac patients

Food Chemistry Volume 224, 1 June 2017, Pages 86-91

Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production

Elisa Carloni ª 🕾 🖾, Giulia Amagliani ª, Enrica Omiccioli ^b, Veronica Ceppetelli ^b, Michele Del Mastro ^c, Luca Rotundo ª, Giorgio Brandi ª, Mauro Magnani ª

Italian pasta certification

Quantification of *T. aestivum* in Italian, European Union (EU), and Non-EU semola

Manufactured using durum wheat semolina

Italian national legislation excludes the use of bread wheat in pasta permitting a maximum content of **3%**.

 \rightarrow the protection of traditional pasta requires a sensible PCR-related techniques

New molecular quantification method (DNA extraction from semolina) real-time PCR targeting **gliadin** and **glutenin** genes → allow a specific and sensitive detection

Food Chemistry Volume 271, 15 January 2019, Pages 410-418

Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products

Silvia Silletti ¹ \boxtimes , Laura Morello ¹ $\stackrel{\frown}{\sim}$ \boxtimes , Floriana Gavazzi \boxtimes , Silvia Gianì \boxtimes , Luca Braglia \boxtimes , Diego Breviario \boxtimes

New food commodities

spelt	M bread wheat	durum wheat	emmer wheat	einkorn wheat	rye	barley	oat	corn	rice buckwheat	soybean	amaranthus	hemp	Ψ	bp
					-								BH 1 1 11 1	1500 1000 700 500

PCR amplification (TBP) on different cereal species

Pasta, bread and cookies, made with mixed flours containing ancient wheat species and other cereals.

 \rightarrow need of analytical methods to determine **authenticity** of these products.

Tubulin-based polymorphism (TBP)

→ discriminate wheat and spelt (*T. spelta*), emmer (*T. dicoccum*), and einkorn (*T. monococcum*)

Sensitivity of 0.5–1% to authenticate the composition of food sample and detect possible adulterations.

What is a GMO? | GMOs are the product of a specific type of plant breeding where precise changes are made to a plant's DNA to give it characteristics that cannot be achieved through traditional plant breeding methods.

Video - Genetic Engineering & Our Food

Are GMOs Good or Bad?

https://www.youtube.com/watch?v=7TmcXYp8xu4

Arroz dourado

Estima-se que um milhão de crianças morre todos os anos com **deficiência em vitamina A** na Ásia onde a <u>base da alimentação</u> é o **arroz**.

Nos **anos 80** um cientista Suiço teve a ideia de produzir um arroz capaz de sintetizar **beta-caroteno** (precursor da vitamina A).

Em **1999** foi anunciado a primeira planta de arroz com uma <u>coloração amarelada nos grãos</u>.

Mesmo com esta causa estes cientistas viram-se envolvidos em várias polémicas tanto éticas como morais \rightarrow 20 anos para ser aprovado.

O primeiro País a autorizar a sua plantação foi o <u>Bangladesh</u>, posteriormente as <u>Filipinas</u>

OGM Wheat IND-ØØ412-7 Drought tolerance

Drought is the major environmental stress affecting crop production.

HaHB4 (Helianthus annuus homeobox 4) gene from sunflower encodes for a <u>transcription</u> <u>factor involved in tolerance</u> to environmental stress.

HaHB4 was introduced in wheat IND-ØØ412-7 (**HB4 wheat**)

 \rightarrow <u>higher yield</u> in environments with low productivity potential.

2019 Gonzalez et al - Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type

OGM Wheat IND-ØØ412-7 Grain composition

Compositional analysis of IND-ØØ412-7 wheat

including 41 nutrients and 2 antinutrients for grain and 10 nutrients in forage

→IND-ØØ412-7 compositionally equivalent to non-transgenic wheat

Component ^a	IND-ØØ412-7 mean (SE) (range)	Cadenza mean (SE) (range)	Commercial references range ^b	Literature range ^c
Ash	2.37 (0.09)	2.32 (0.07)	1.91-2.09	1.2-3.0
	(1.37-2.90)	(1.69-2.79)		
Carbohydrates	65.4 (0.0)	65.8 (0.48)	65.4-67.5	65.4-78.0
	(62.5-70.2)	(63.0-70.3)		
Moisture	13.09 (0.12)	12.99 (0.16)	13.99-14.30	8.0-18.0
	(12.14-14.75)	(11.83-14.63)		
Protein	16.2 (0.4)	15.9 (0.3)	14.2-15.2	10.0-16.0
	(12.3-18.4)	(13.1-18.7)		
Total fat	2.3 (0.0)	2.2 (0.1)	2.1-2.3	1.5-2.0
	(1.8-2.6)	(1.6-2.7)		
Starch	63.7 (0.5)	63.7 (0.4)	63.6-66.0	59-72
	(60.8-68.6)	(61.1-69.3)		
Dietary fiber	13.8 (0.2)	13.9 (0.2)	14.0-15.3	11.0-14.6
	(12.0-15.5)	(11.6-16.0)		
Calcium	461 (12)	458 (12)	441-501	250-538 ^d
	(373-573)	(374-548)		
Iron	49 (2)	50 (2)	38-43	33-79 ^d
	(31-65)	(30-76)		
Phosphorus	4912 (167)	4961 (160)	3970-4534	3320-5160
	(3194-6146)	(3466-6061)		
Selenium	0.55 (0.03)	0.55 (0.03)	0.53-0.58	0.04-0.71 ^d
	(0.35-0.78)	(0.37-0.82)		
Zinc	42 (2)*	46 (2)	32-35	24-47 ^d
	(22-63)	(28-56)		
Thiamine	4.0 (0.1)	4.1 (0.1)	4.0-4.3	1.3-9.9
	(3.1-4.7)	(3.2-5.0)		
Riboflavin	0.43 (0.03)	0.40 (0.02)	0.48-0.66	0.6-3.1
	(0.25-0.81)	(0.25-0.62)		
Niacin	60.4 (2.2)	58.8 (1.8)	57.9-68.0	22.0-111.0
	(45.7-83.8)	(46.7-80.8)		
Pyridoxine	4.0 (0.1)	4.1 (0.1)	3.9-4.2	0.9-7.9
	(3.3-4.9)	(3.3-4.8)		
Folic acid	0.29 (0.01)*	0.31 (0.01)	0.27-0.33	0.2-0.9
	(0.17-0.38)	(0.16-0.40)		
α-Tocopherol	10.7 (0.4)	10.6 (0.3)	8.4-9.5	9-18
	(6.5-14.0)	(7.7-13.7)		

2019 Ayala et al - Compositional equivalence of event IND-ØØ412-7 to non-transgenic wheat

CRISPR/Cas9 genetic scissors

 \rightarrow Genes turned off

 \rightarrow Gene insert,

repair or edit

INSERTED DNA

Video - CRISPR/Cas9 Genetic engineering will change everything

https://innovativegenomics.org/multimedia-library/kurzgesagt-video-animates-crispr/

CRISPR/Cas9 for **crop improvemen**

Gene editing using CRISPR/Cas

Can play a major role in ensuring food security developing

- <u>resilient</u> commercial crops
- improved <u>yield</u>
- improved nutritional value
- → mutation in genes and regulatory regions induce variable phenotypes

CRISPR/Cas gene editing in cereal crops

Rice		Golden rice 1 & golden rice 2	Targeted gene insertion	High β-carotene in grains	Dong et al. (2020)
Rice		Cytochrome P450s and OsBADH2	Loss of function	Improved fragrance in grains	Usman et al. (2020)
Maize		ZmSH2 & WX	Loss of function	Super sweet and waxy corn	Dong et al. (2019)
Maize	n	Multiple genes	Loss of function	Characterized novel genes for agronomic and nutritional importance in maize	Liu et al. (2020)
Wheat		TaGW7	Loss of function	Enhanced weight and shape of wheat grain	Wang, Pan, et al. (2019)
Wheat		Taα-gliadin	Loss of function	Less gluten content in wheat grain	Sanchez-Leon et al. (2018)
Barley	W	Hv d-Hordein	Loss of function	Increased starch content, amylose content, and beta-glucan content	Yang et al. (2020)
	X				

2020 Tiwai et al - Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security

